En la gráfica aparece un cuerpo realizando un movimiento circular uniforme.
Arrastra el valor de la rapidez (módulo del vector velocidad) para observar como el cuerpo se mueve más deprisa o más despacio.
Observa las distintas magnitudes cinemáticas. Comprueba además, que el vector velocidad, en verde, es tangente en cada punto a la trayectoria y por otro lado, la aceleración normal, en rojo, es la responsable de que cambie la dirección de la velocidad. Su dirección apunta siempre hacia el centro del radio de giro y su valor (módulo) depende de la rapidez que tenga el cuerpo.
Ejemplos de M.C.U. resueltos del cajón de ciencias:
1) Un tocadiscos gira a 90rpm. Halla su velocidad angular en radianes por segundo y calcula su
periodo y frecuencia.
Para pasar de revoluciones por minuto a radianes por segundo, solo tenemos que recordar que una
vuelta entera (360º, una revolución) equivale a 2π radianes (o que media vuelta, 180º, son π
radianes). Con eso ya podemos hacer regla de tres:
1 vuelta → 2π radianes
90 vueltas → x radianes x = 180 π radianes
180 π radianes → 60 segundos
1 segundo → x segundos x = 3 π radianes/segundo
Ya tenemos la velocidad angular (ω). El periodo (T) se saca mediante la fórmula:
ω = 2π / T
T = 2π /3π = 2/3 s
La frecuencia (f) es la inversa del periodo:
f = 1/T
f = 3/2 s-1
2) Una rueda de bicicleta de 80cm de radio gira a 200 revoluciones por minuto. Calcula: a) su
velocidad angular b) su velocidad lineal en la llanta c) su periodo d) su frecuencia.
El apartado a) se resuelve igual que el ejercicio anterior:
1 vuelta → 2π radianes
200 vueltas → x radianes x = 400π radianes
400π radianes → 60 segundos
1 segundo → x radianes x = 20π/3 radianes/segundo
b) Para sacar la velocidad lineal a partir de la angular, solo tenemos que multiplicar por el radio (en
metros). Esto vale para calcular cualquier magnitud lineal a partir de la angular.
v = ω·R
v = 20π/3·0,8 = 16,76 m/s
c) Ya vimos en el ejercicio anterior cómo calcular el periodo a partir de la velocidad angular:
ω = 2π / T
T = 2π /(20π/3) = 3/10 s
www.cajondeciencias.com
3) Un tiovivo gira a 30 revoluciones por minuto. Calcula la velocidad angular y la velocidad lineal
de un caballito que esté a 1,5 metros del centro y de otro que esté a 2 metros. Calcula la
aceleración normal para este último.
La velocidad angular es la misma para los dos caballitos, sin importar lo lejos que estén del centro.
Si no fuera así, algunos caballitos adelantarían a otros dentro del tiovivo. Si la calculas del mismo
modo que en ejercicios anteriores, verás que el resultado es de π radianes/segundo.
Pero la velocidad lineal no es la misma para los dos, porque el caballito que esté más hacia fuera
debe recorrer un círculo mayor en el mismo tiempo. Para calcular las velocidades lineales,
multiplicamos las angulares por los respectivos radios:
caballito 1: v = π · 1,5 = 4,71 m/s
caballito 2: v = π · 2 = 6,28 m/s
Aunque sea un MCU, existe una aceleración, llamada "normal" que es la responsable de que el
objeto se mueva en círculos en vez de en línea recta. Esta aceleración es igual a la velocidad lineal
al cuadrado dividida entre el radio:
an = v2/R = 6,282/2 = 19,74 m/s2
4) Un MCU tiene una frecuencia de 60 herzios. Calcula:
a) su velocidad angular
b) su periodo
c) su velocidad angular en revoluciones por minuto.
En primer lugar, medir la frecuencia en herzios es lo mismo que medirla en segundos-1, así que no
pienses que eso cambia nada. A partir de la frecuencia, podemos sacar directamente el periodo, y
luego la velocidad angular (respondemos primero al apartado b y luego al a)
T = 1/f = 1/60 s
ω = 2π / T = 2π / (1/60) = 120π rad/s
Para resolver el c, como una revolución son 2π radianes, dividimos entre 2π para ver el número de
vueltas por segundo. Después multiplicamos por 60 para ver el número de vueltas (revoluciones)
por minuto:
120π rad/s : 2π = 60 rps = 3600 vueltas por minuto