miércoles, 3 de junio de 2015

Aceleración Constante

La aceleración se define como la variación de la velocidad en la unidad de tiempo y representa, por tanto, el ritmo de variación de la velocidad con el tiempo.

Una de las características que definen la potencia de un automóvil es su capacidad para ganar velocidad. Por tal motivo, los fabricantes suelen informar de ello al comprador, indicando qué tiempo (en segundos) tarda el modelo en cuestión en alcanzar los 100 km/h partiendo del reposo. Ese tiempo, que no es propiamente una aceleración, está directamente relacionado con ella, puesto que cuanto mayor sea la rapidez con la que el coche gana velocidad, menor será el tiempo que emplea en pasar de 0 a 100 km/h. Un modelo que emplee 5,4 s en conseguir los 100 km/h habrá desarrollado una aceleración que puede calcularse del siguiente modo:





En física, todo movimiento uniformemente acelerado (MUA) es aquel movimiento en el que la aceleración que experimenta un cuerpo permanece constante (en magnitud y dirección) en el transcurso del tiempo.
  1. El movimiento rectilíneo uniformemente acelerado, en el que la trayectoria es rectilínea, que se presenta cuando la aceleración y la velocidad inicial tienen la misma dirección.
  2. El movimiento parabólico, en el que la trayectoria descrita es una parábola, que se presenta cuando la aceleración y la velocidad inicial no tienen la misma dirección.
En el movimiento circular uniforme, la aceleración tan solo es constante en módulo, pero no lo es en dirección, por ser cada instante perpendicular a la velocidad, estando dirigida hacia el centro de la trayectoria circular (aceleración centrípeta).Por ello, no puede considerársele un movimiento uniformemente acelerado, a menos que nos refiramos a su aceleración angular.



Movimiento circular uniforme

En física, el movimiento circular uniforme (también denominado movimiento uniformemente circular) describe el movimiento de un cuerpo atravesando con una velocidadconstante una trayectoria circular.
Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.

Características del Movimiento Circular Uniforme (M.C.U.)

Algunas de las prinicipales características del movimiento circular uniforme (m.c.u.) son las siguientes:
  1. La velocidad angular es constante (ω = cte)
  2. El vector velocidad es tangente en cada punto a la trayectoria y su sentido es el del movimiento. Esto implica que el movimiento cuenta con aceleración normal
  3. Tanto la aceleración angular (α) como la aceleración tangencial (at) son nulas, ya que que la rapidez o celeridad (módulo del vector velocidad) es constante
  4. Existe un periodo (T), que es el tiempo que el cuerpo emplea en dar una vuelta completa. Esto implica que las características del movimiento son las mismas cada T segundos. La expresión para el cálculo del periodo es T=2π/ω y es sólo válida en el caso de los movimientos circulares uniformes (m.c.u.)
  5. Existe una frecuencia (f), que es el número de vueltas que da el cuerpo en un segundo. Su valor es el inverso del periodo
Experimenta y Aprende
0
5
10
15
20
25
-5
-10
-15
-20
-25
0
5
10
-5
-10
cuerpo
v⃗  = 3.00
v⃗ 
a⃗ n
Datos
α = 0 rad/s2
|a⃗t|= 0 m/s2
R = 5 m
ω=|v⃗|/R=0.60 rad/sg
an=v2/R=1.80 m/sg2
Movimiento circular uniforme (m.c.u.)
En la gráfica aparece un cuerpo realizando un movimiento circular uniforme.
Arrastra el valor de la rapidez (módulo del vector velocidad)  para observar como el cuerpo se mueve más deprisa o más despacio.
Observa las distintas magnitudes cinemáticas. Comprueba además, que el vector velocidad, en verde, es tangente en cada punto a la trayectoria y por otro lado, la aceleración normal, en rojo, es la responsable de que cambie la dirección de la velocidad. Su dirección apunta siempre hacia el centro del radio de giro y su valor (módulo) depende de la rapidez que tenga el cuerpo.
Ejemplos de M.C.U. resueltos del cajón de ciencias:
1) Un tocadiscos gira a 90rpm. Halla su velocidad angular en radianes por segundo y calcula su
periodo y frecuencia.
Para pasar de revoluciones por minuto a radianes por segundo, solo tenemos que recordar que una
vuelta entera (360º, una revolución) equivale a 2π radianes (o que media vuelta, 180º, son π
radianes). Con eso ya podemos hacer regla de tres:
1 vuelta → 2π radianes
90 vueltas → x radianes x = 180 π radianes
180 π radianes → 60 segundos
1 segundo → x segundos x = 3 π radianes/segundo
Ya tenemos la velocidad angular (ω). El periodo (T) se saca mediante la fórmula:
ω = 2π / T
T = 2π /3π = 2/3 s
La frecuencia (f) es la inversa del periodo:
f = 1/T
f = 3/2 s-1
2) Una rueda de bicicleta de 80cm de radio gira a 200 revoluciones por minuto. Calcula: a) su
velocidad angular b) su velocidad lineal en la llanta c) su periodo d) su frecuencia.
El apartado a) se resuelve igual que el ejercicio anterior:
1 vuelta → 2π radianes
200 vueltas → x radianes x = 400π radianes
400π radianes → 60 segundos
1 segundo → x radianes x = 20π/3 radianes/segundo
b) Para sacar la velocidad lineal a partir de la angular, solo tenemos que multiplicar por el radio (en
metros). Esto vale para calcular cualquier magnitud lineal a partir de la angular.
v = ω·R
v = 20π/3·0,8 = 16,76 m/s
c) Ya vimos en el ejercicio anterior cómo calcular el periodo a partir de la velocidad angular:
ω = 2π / T
T = 2π /(20π/3) = 3/10 s
www.cajondeciencias.com
3) Un tiovivo gira a 30 revoluciones por minuto. Calcula la velocidad angular y la velocidad lineal
de un caballito que esté a 1,5 metros del centro y de otro que esté a 2 metros. Calcula la
aceleración normal para este último.
La velocidad angular es la misma para los dos caballitos, sin importar lo lejos que estén del centro.
Si no fuera así, algunos caballitos adelantarían a otros dentro del tiovivo. Si la calculas del mismo
modo que en ejercicios anteriores, verás que el resultado es de π radianes/segundo.
Pero la velocidad lineal no es la misma para los dos, porque el caballito que esté más hacia fuera
debe recorrer un círculo mayor en el mismo tiempo. Para calcular las velocidades lineales,
multiplicamos las angulares por los respectivos radios:
caballito 1: v = π · 1,5 = 4,71 m/s
caballito 2: v = π · 2 = 6,28 m/s
Aunque sea un MCU, existe una aceleración, llamada "normal" que es la responsable de que el
objeto se mueva en círculos en vez de en línea recta. Esta aceleración es igual a la velocidad lineal
al cuadrado dividida entre el radio:
an = v2/R = 6,282/2 = 19,74 m/s2
4) Un MCU tiene una frecuencia de 60 herzios. Calcula:
a) su velocidad angular
b) su periodo
c) su velocidad angular en revoluciones por minuto.
En primer lugar, medir la frecuencia en herzios es lo mismo que medirla en segundos-1, así que no
pienses que eso cambia nada. A partir de la frecuencia, podemos sacar directamente el periodo, y
luego la velocidad angular (respondemos primero al apartado b y luego al a)
T = 1/f = 1/60 s
ω = 2π / T = 2π / (1/60) = 120π rad/s
Para resolver el c, como una revolución son 2π radianes, dividimos entre 2π para ver el número de
vueltas por segundo. Después multiplicamos por 60 para ver el número de vueltas (revoluciones)
por minuto:
120π rad/s : 2π = 60 rps = 3600 vueltas por minuto



No hay comentarios:

Publicar un comentario